
BigNums
 When 64 bits just isn’t enough

Dana Jacobsen, 10 Jun 2015
YAPC::NA 2015

Who am I?

Software Engineer at AppNexus
Member of PDX.pm
Perl user since 4.011 (Nov 1991)

Author of ntheory module
Author of non-Pari replacements for Crypt::RSA & DSA
Contributor to RosettaCode and OEIS

dana@acm.org

Pascal’s Triangle
sub pascal {

 my $rows = shift;

 my @next = (1);

 for my $n (1 .. $rows) {

 print "@next\n";

 @next = (1,

 (map $next[$_]+$next[$_+1], 0 .. $n-2),

 1);

 }

}

1
1 1
1 2 1
1 3 3 1
1 4 6 4 1
1 5 10 10 5 1
1 6 15 20 15 6 1
1 7 21 35 35 21 7 1
1 8 28 56 70 56 28 8 1
....
... 2.1912870037045e+19 ... [line 69]

line 55 with 32-bit perl

Perl’s numbers
perl32 -E ‘say ~0’

4294967295

perl -E ‘say ~0’

18446744073709551615

perl -E 'say 84931153 * 72761567'

6.17972377939675e+15

More NVs, and use integer
perl32 -E ‘97829 * 125141'

12242418889 <= an NV (double)

perl -E ‘use integer; say 84931153 * 72761567'

6179723779396751 <= looks good!

perl32 -E ‘use integer; say 84931153 * 72761567'

279860367 <= oh my

perl32 -E ‘use integer; say 2**31+1’

-2147483647 <= Argh

Math::BigInt
use Math::BigInt;

my $n = Math::BigInt->new(1);

my $m = Math::BigInt->new(10) ** 457 + 499;

No FP conversions on operations (integer semantics)

Arbitrary length: 10s of millions of digits if desired

Pascal’s Triangle
sub pascal {

 my $rows = shift;

 my @next = (1);

 for my $n (1 .. $rows) {

 print "@next\n";

 @next = (1,

 (map $next[$_]+$next[$_+1], 0 .. $n-2),

 1);

 }

}

1
1 1
1 2 1
1 3 3 1
1 4 6 4 1
1 5 10 10 5 1
1 6 15 20 15 6 1
1 7 21 35 35 21 7 1
1 8 28 56 70 56 28 8 1
....
... 2.1912870037045e+19 ... [line 69]

Pascal’s Triangle
sub pascal {

 use bigint;

 my $rows = shift;

 my @next = (1);

 for my $n (1 .. $rows) {

 print "@next\n";

 @next = (1,

 (map $next[$_]+$next[$_+1], 0 .. $n-2),

 1);

 }

}

1
1 1
1 2 1
1 3 3 1
1 4 6 4 1
1 5 10 10 5 1
1 6 15 20 15 6 1
1 7 21 35 35 21 7 1
1 8 28 56 70 56 28 8 1
....
... 21912870037044995008 ... [line 69]

Binomial
sub binomial {

 my ($r, $n, $k) = (1, @_);

 for (1 .. $k) { $r *= $n--; $r /= $_ }

 $r;

}

FP results at (53,23) in 32-bit
FP results at (63,29) in 64-bit

Binomial
sub binomial {

 use bigint;

 my ($r, $n, $k) = (1, @_);

 for (1 .. $k) { $r *= $n--; $r /= $_ }

 $r;

}

Works correctly for large inputs

Math::BigInt extras
$x->bmodpow($y, $n) # ($x ** $y) % $n

$n->bfac() # n!

$n->bnok($k) # binomial($n,$k)

$n->blog($base) # log_$base of $n

my $n = Math::BigInt->from_bin(“1101010111”);

my $m = Math::BigInt->from_hex(“0xDEADC0DE”);

say $m->as_bin();

say $n->as_hex();

Math::BigInt gotchas
use bigint;

for my $x (3000000..3000001) {

 for my $y (3000000..3000001) {

 for my $z (3000000..3000001) {

 say $x * $y * $z;

 }

 }

}

2.7e+19

2.7000009e+19

...

Ranges are always signed ints

Math::BigInt gotchas
use bigint;

for my $x (3000000..3000001) {

 for my $y (3000000..3000001) {

 for my $z (3000000..3000001) {

 say 1 * $x * $y * $z;

 }

 }

}

27000000000000000000

27000009000000000000

...

Ranges are always signed ints
Coerce to bigint: 1* 0+

Math::BigInt gotchas
use bigint;

my @n = (qw/6038203321 5157712919 4485674059 6818955709/);

$n[0] *= $n[$_] for 1..$#n;

say $n[0];

9.52599789253049e+38

Strings aren’t bigints
Coerce or explicitly create object

User input, hash keys, etc.

Math::BigInt gotchas
use bigint;

say ~0;

-1

Complement of 0 isn’t UV_MAX

Crossing a Camel with a Snail
RosettaCode AGM example. Calculate 10k digits of Pi.

2min 43s bigint

Crossing a Camel with a Snail
RosettaCode AGM example. Calculate 10k digits of Pi.

2min 43s bigint

 6.7s bigint lib=>”Pari”;

 0.13s bigint lib=>”GMP”;

Crossing a Camel with a Snail
RosettaCode AGM example. Calculate 10k digits of Pi.

2min 43s bigint

 6.7s bigint lib=>”Pari”;

 0.13s bigint lib=>”GMP”;

To install: cpan Math::BigInt::GMP

try => ”GMP,Pari”

only => “GMP”

The perils of CPAN
Neither back end will install since 5.21.0 (including 5.22.0). Doh!

GMP backend turns large ints into negative inputs.
Workaround: stringify everything: $n=Math::BigInt->new(“$m”);
RT filed 3.5 years ago. Patch submitted 2 years ago. Still waiting.

Pari backend doesn’t work on Win64. At all.

threads plus loading Pari = boom.

A racing snail without its shell is just sluggish

Binomial example. Binomials $n = 1..300, $k = 1..$n/2

 34.7s bigint

 34.3s bigint lib=>”Pari”

 30.7s bigint lib=>”GMP”;

A lot of pure Perl code per op =
a lot of overhead per operation.

… but all hope is not lost

Binomial example. Binomials $n = 1..300, $k = 1..$n/2

 34.7s bigint

 34.3s bigint lib=>”Pari”

 30.7s bigint lib=>”GMP”

 1.4s Math::Pari qw/:int/

 3.8s Math::GMP qw/:constant/

 0.5s Math::GMPz

A lot of pure Perl code per op =
a lot of overhead per operation.

Math::Int64
use Math::Int64 "int64";

my ($n,$m) = (int64(12), int64("282374892374982374"));

say $n * $m;

With a non-ancient C compiler, gives you fast 64-bit objects.

You could just install 64-bit Perl.

It has some nice extra features, like use integer but more.

Math::Int128
use Math::Int128 "int128";

my ($n,$m) = (int128(12), int128("28237489237498237498"));

say $n * $m;

Must have 128-bit support in your C compiler (e.g. gcc) and
architecture (x86_64 or Power).

Very similar to Math::Int64

Fast. Very similar to Math::GMPz

Big Integer Math Libraries
Roll your own

LibTomMath

Pari

GMP

gwnum

Math::Pari
use Math::Pari qw/:int/;

Number one issue: no active maintainer.
Based on Pari 2.1.x line from 2000. Current Pari is 2.7.3.

Math::Pari
use Math::Pari qw/:int/;

Number one issue: no active maintainer.
Based on Pari 2.1.x line from 2000. Current Pari is 2.7.3.

perl -MMath::Pari=isprime -E 'while (1) { die "22027*44053 is
prime? Cool story, bro!" if isprime(22027*44053); }'

22027*44053 is prime? Cool story, bro!

Will tell you 9 is prime too. Fixed in Pari 2.3.0.

Math::Pari
Downloads code from 3rd party (Pari) ftp server

threads + Pari => immediate segfault

Doesn’t work on Win64

XS internals: “There is way way way too much crack-fuelled cheating.”
 (Nick Clark, p5p list, 2008)

Used by classic Perl crypto modules. Replacements available.

Math::GMP
use Math::GMP qw/:constant/;

Overall a good choice.

There are a few issues:
- more overhead than needed per call, but nothing compared to

Math::BigInt.
- intify process can do wonky things with XS modules. Patch

submitted.

Math::GMPz
Exposes GMP mpz functions to Perl.
No handholding, no auto-bigint option, no safety net if you call its
functions with bad arguments.

Very low overhead. Fastest of all options.

I’ve found a couple very small bugs. Fixed and new release sent out
within a day of submitting.

Lots of undocumented & unsupported functions for the curious.

Performance hacks for Math::BigInt
Make a Math::BigInt object only what has to be.

 my $n = 50; # n is a native int

 my $mult = Math::BigInt->bone; # mult is bigint 1

Use two code paths for native vs. bigint, or by initial value

 my $mult = ($n>20) ? Math::BigInt->bone : 1;

Performance hacks for Math::BigInt
Call functions directly:

 my $q = $g->copy->bsub($r)->bdiv($w); # ($g-$r)/$w

Always use binc and bdec, or ++ / --

 $n->binc(); # 4x faster than $n += 1

Predefine constants as bigints outside of loops.

Floating Point
Floating point is not easy to get right.

1991 ACM Computing Surveys article:

 “What every computer scientist should know about floating point”

48 pages.

Floating Point Modules
Math::LongDouble worth mentioning

Math::BigFloat (and bignum) in core. Slow.

Math::GMPf Low level API

Math::MPFR Low level API

As much Pi as you want
 15min 51s Math::BigFloat->bpi(10_000)

 26.1s Math::BigFloat->bpi(10_000) Pari backend

 0.4s Math::BigFloat->bpi(10_000) GMP backend

As much Pi as you want
 15min 51s Math::BigFloat->bpi(10_000)

 26.1s Math::BigFloat->bpi(10_000) Pari backend

 0.4s Math::BigFloat->bpi(10_000) GMP backend

 1min 37s Math::BigFloat->bpi(100_000) GMP backend

4hr 34min Math::BigFloat->bpi(1_000_000) GMP backend

As much Pi as you want
 15min 51s Math::BigFloat->bpi(10_000)

 26.1s Math::BigFloat->bpi(10_000) Pari backend

 0.4s Math::BigFloat->bpi(10_000) GMP backend

 1min 37s Math::BigFloat->bpi(100_000) GMP backend

4hr 34min Math::BigFloat->bpi(1_000_000) GMP backend

 1.8s GMP: use ntheory; say length(Pi(1_000_000));

 1.3s MPFR: use Math::MPFR;

 my $pi = Math::MPFR::Rmpfr_init2(1_000_000*3.321923);

 Math::MPFR::Rmpfr_const_pi($pi,MPFR_RNDZ);

 say length($pi);

Summary
Integers:

- Math::BigInt or bigint [Simple, in core, slow]
- Math::GMP or Math::GMPz or Math::GMP qw/:constant/

Recommended if you have or can install GMP
Floats:

- Math::BigFloat or bignum [Simple, in core, slow]
- Math::MPFR

Want:
- transparent Math::GMPz and Math::MPFR

Thank you, and Questions

